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Structure factor scaling in aggregating systems

H. Huang, C. Oh, and C. M. Sorensen
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

~Received 1 August 1997!

We study the structure factor of evolving two-phase systems such as aggregating colloids and spinodally
decomposing fluids. We interpret the total structure factor as described well by the product of cluster-cluster
and single-cluster structure factors, each with their own characteristic length, the mean cluster nearest-neighbor
separation, and the cluster size, respectively. Both length scales are thus relevant to the total structure factor.
For systems with moderate to strong cluster-cluster correlations, this product causes an apparent peak in the
structure factor. For compact clusters, i.e., clusters with a fractal dimension equal to the spatial dimension, this
peak obeys the experimentally observed scaling law. However, for fractal clusters the two length scales evolve
differently, hence scaling cannot occur. Despite this, our simulations show an apparent scaling when the
system is dense enough so that the two length scales are comparable in magnitude. When this occurs, each
length scale eliminates the individual effect of the other from the total structure factor leaving a peak. These
results explain both the lack of scaling early and the scaling observed latter in experiments on aggregating
colloids. An important conclusion is that the position of this peakqm does not represent a true length scale of
the system.@S1063-651X~98!08501-8#

PACS number~s!: 82.70.Dd, 64.75.1g, 05.40.1j, 78.35.1c
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I. INTRODUCTION

Recently, a number of studies have appeared that m
sured the wave-vector-dependent scattered light inten
I (q,t) from dense aggregating colloids@1–5# undergoing
diffusion-limited cluster aggregation~DLCA!. I (q,t) was
found to exhibit a maximum at a positionqm , which in-
creased in intensity whileqm decreased with time. For lat
stages of aggregation near the gel point, the scattered in
sity was found to scale according to

I ~q,t !;qm
2aF~x!, ~1a!

F~x!;x2b, x@1 ~1b!

x5q/qm . ~1c!

For colloids of noncompact, fractal aggregatesa5b5D,
the mass fractal dimension of the aggregate. Remarka
Eqs. ~1! are identical in form to the structure factors me
sured for fluids undergoing spinodal decomposition exc
that in this casea5d and b5d11, whered is the spatial
dimension@6–8#. Similar structure factors have also be
observed for other nonequilibrium systems@9,10#. The
source of the universality of Eqs.~1! has been speculated t
lie in some feature of the growth kinetics common to
these systems, but no such mechanism has yet been fo
The question remains in what manner all these phenom
are related.

For aggregating colloids the general interpretation of E
~1! is that the peak implies a special length scaleqm

21, in-
duced by the aggregation kinetics, which in some man
brings order to the system@2,11–16#. Physical identification
of qm

21 has been ambiguous with attempts having been m
to correlate it to the cluster mean nearest-neighbor separa
RNN , depletion zones surrounding the growing clusters,
shoulders in the real-space correlation function. There
571063-651X/98/57~1!/875~6!/$15.00
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however, two length scales in the system: the cluster nea
neighbor separation and the cluster size@5,12,15#; if the frac-
tal dimension of the cluster is not equal to the space dim
sion, these two lengths are not linearly proportional. Th
other questions arise regarding how one length scale imp
by qm

21 arises out of a two-length-scale system and how
account for the dynamic scaling of Eqs.~1!, which is incom-
patible with two length scales.

In this paper we address these questions and establ
general explanation of Eqs.~1!. We show that the total struc
ture factor observed in experiment is a combination of t
structure factors: the single-cluster structure factor, wh
involves the cluster sizeRg , and the cluster-cluster structur
factor, which involves the mean nearest-neighbor dista
RNN . For compact clusters, i.e.,D5d, Rg andRNN are pro-
portional, so there is only one independent length sc
hence scaling is achieved at all times. For fractal clust
D,d, soRg andRNN are independent, hence scaling shou
not occur. In fact, experiments@1,4# on aggregating colloids
show that when the system is not dense, i.e., whenRg
!RNN , scaling does not occur. Remarkably, however,
periment, previous simulations, and our simulations to
described below show scaling in dense systems whenRg
&RNN despiteD,d. We show that this scaling occurs whe
the slope changes in the two structure factors nearRg

21 and
RNN

21 overlap in a manner that eliminates their individual e
fects in the total structure factor and leaves a peak. Thus
important conclusion of our work is that the peak in the to
structure factor atqm doesnot indicate a fundamental lengt
scale of the system because it is an artifact of this unus
overlap. We also describe how the visibility of the peak
related to the cluster-cluster correlation. Our general con
sion is that the features common to all these experime
dense aggregating colloids, spinodally decomposing flu
etc., are simply conservation of mass and light scattering~or
the scattering of waves in general!, which probes the system
875 © 1998 The American Physical Society
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876 57H. HUANG, C. OH, AND C. M. SORENSEN
with a characteristic lengthq21. Beyond this, the nature o
the kinetics is ancillary, serving to affect the visibility of th
features in the structure factor, e.g., the peak, but not dire
responsible for them.

II. THEORETICAL DISCUSSION

A. Heuristic example

For heuristic purposes we first consider the simple cas
a very dilute aggregating system. This will allow us to de
onstrate the importance of mass conservation and the sca
ing characteristic length scaleq21 and to deemphasize th
importance of the kinetics for scaling of the scattered lig
intensity. For a monodisperse system of clusters, the s
tered intensity is given by@17,18#

I SC~q!5NCsscat
monoSSC~qRg!, ~2!

whereNC is the number of clusters of radius of gyrationRg
with N monomers per cluster each with a scattering cr
section of sscat

mono. The single-cluster structure facto
SSC(qRg) is strictly a function of the dimensionless produ
qRg , the characteristic length of the cluster beingRg . For
our purposes here its exact form is not important, but
limiting behavior is

SSC~qRg!5H N2, qRg!1

N2~qRg!2D, qRg@1.

~3a!

~3b!

For a fractal,N5k0(Rg /a)D, wherea is the monomer radius
andk0 is a constant near unity@19#. Mass conservation dur
ing aggregation implies a constant number of monomersNm
in the complete system given by

Nm5NCN. ~4!

Figure 1 is a sketch of the scattered intensity at vari
stages of aggregation for a very dilute system. At lowq there
is a q-independent Rayleigh regime. At higherq, a bend in

FIG. 1. Sketch of the scattered intensity as a function of w
vectorq for a dilute aggregating system at various times. The in
shows single curve scaling of these intensities whereqb is the value
of q at the bend inS(q) andD is the cluster fractal dimension.
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the curves occurs when the characteristic length scale of
scattering q21 becomes comparable to the characteris
length scale of the aggregating system, which when v
dilute is the cluster sizeRg . If we define the bend in the
curve to be atqb5Rg

21, then Eqs.~2!–~4! yield

I ~q!5Nmsscat
monoqb

2D fF~q/qb!. ~5!

Equation~5! has the same form as Eq.~1!, i.e., it scales in the
same manner. This scaling is a simple result of~i! mass
conservation,~ii ! the single-valued nature of the single
cluster structure factor dependence onqRg , and~iii ! the fact
that there is only one length scale accessible to theq range of
the experiment,Rg . Moreover, it occurs regardless of th
kinetics of aggregation. Thus, whereas the remarkable
covery was that dense aggregating systems exhibit sca
we see that a very dilute aggregating system scales in ac
with Eqs.~1! as well.

The structure factor for the very dilute system in Eq.~2! is
inadequate for dense systems because it neglects interclu
or cluster-cluster, effects. As we will soon see, these clus
cluster effects introduce two more length scales that can
relevant to scattering data analysis.

B. General situation

To understand the most general scattering situation c
sider the total structure factor for a system ofNm monomer
particles given by

Stot~q!5(
i

Nm

(
j

Nm

eiqW •~rW i2rW j !. ~6!

In Eq. ~6! rW i is the position of thei th monomer. Equation~6!
factors if we write rW i as the sum of the positions of th
centers of mass of theath clusterrWc.m.,a and the position of
thekth monomer in the cluster relative to this center of ma
dW k :

rW i5rWc.m.,a1dW k . ~7!

Then Eq.~6! becomes

Stot5(
a

NC

(
b

NC

(
k

N

(
l

N

eiqW •~rWc.m.,a2rWc.m.,b1dW k2dW l !. ~8!

If the clusters are monodisperse, i.e., all have the sameN,
the factorization occurs

Stot5(
a

NC

(
b

NC

eiqW •~rWc.m.,a2rWc.m.,b!(
k

N

(
l

N

eiqW •~dW k2dW l !, ~9!

which we rewrite as

Stot5SCC~q!SSC~q!. ~10!

Equations~9! and ~10! define the cluster-cluster~CC! and
single-cluster~SC! structure factors. For polydisperse clu
ters Eq.~10! is inexact, but, as we will see by simulatio
below, it is a good approximation. Usually, for instance, o
simple example above, the length scale involved in
cluster-cluster structure factor is too large to be observabl
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57 877STRUCTURE FACTOR SCALING IN AGGREGATING SYSTEMS
a scattering experiment, henceSCC(q) is a constant equal to
NC as in Eq.~2!. However, for dense systems, either colloi
or spinodally decomposing fluids, the length scale inheren
SCC(q) falls into the experimental range, which might lead
variation withq, which must be accounted for.

Figure 2 shows the general behavior ofSCC(q). Two
length scales are relevant: the overall system size, i.e.,
size of the scattering volumeL, and the mean neares
neighbor cluster separationRNN . At very low q such that
q,L21, the clusters scatter coherently; since there areNC

clusters,SCC(q)5NC
2 . For L21<q,RNN

21 the Porod regime
of the scattering volume is obtained where SCC(q)
;q2(d11). Jumping ahead toq@RNN

21, SCC(q)5NC , a con-
stant due to the incoherent addition ofNC waves. This is the
regime usually encountered in nondense systems. The
gime nearq;RNN

21 requires special attention. For a high
structured system of clusters in whichRNN is well defined,
i.e., it has a narrow distribution, a damped oscillation occ
in SCC(q) with minima atpRNN

21,3pRNN
21,..., andmaxima at

2pRNN
21,4pRNN

21. This is depicted by the dotted line in Fig. 2
An example of analogous behavior is the behavior of
single-cluster structure factor for clusters of touching mo
mers of radiusa ~hence a well-defined monomer distanc!,
which shows oscillatory behavior with half periodp/a @20#.
As the cluster system becomes less structured, i.e., as
distribution inRNN broadens, the oscillatory behavior wash
out. We will see in our simulations below that for a den
DLCA system that is moderately structured what remains
the oscillation is a dip below a shoulder near 4.5RNN

21, which
is near the middle ofpRNN

21 and 2pRNN
21. This behavior is

depicted in Fig. 2 by the dashed line. For unstructured s
tems of clusters the dip washes out completely, as depi
by the solid line.

Figure 3 graphically demonstrates the product in Eq.~10!,

FIG. 2. Cluster-cluster structure factorSCC(q). NC is the num-
ber of clusters in the scattering volume, L is the size of the sca
ing volume,RNN is the mean cluster-cluster center-of-mass sep
tion, andd is the spatial dimension. The solid line is for rando
positioning of the clusters, the dashed line is for moderate corr
tion between clusters, and the dotted line is for strong correlat
between clusters.
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which leads to the total structure factor. The upper curve
the single-cluster structure factor as discussed in Fig. 1.
single characteristic length is the cluster size, which we t
as the cluster radius of gyrationRg . For q.Rg

21, if the
cluster is a mass fractal, the slope on this log-log plot is2D;
if the cluster is compact, it will have a well-defined surfa
hence Porod scattering will occur with a slope of2(d
11). In either case forq,Rg

21 the constant Rayleigh re
gime is obtained withSSC(q)5N2 due to coherent addition
of the N waves scattered from theN monomers in the clus-
ter. The second curve in Fig. 3 isSCC(q) for a moderately
structured system of clusters~i.e., the dashed line of Fig. 2!.
The bottom curve in Fig. 3 shows the product of the upp
two curves, i.e.,Stot5SCCSSC. For a moderately structure
system of clusters a broad peak inStot(q) occurs. This is the
peak seen in dense aggregating and spinodally decompo
systems, which we now describe in detail.

Consider the evolution ofStot(q) with time. As the system
aggregates, the number of monomers per aggregateN in-
creases. The characteristic length scales are related toN by

Rg;N1/D, ~11a!

RNN;L~N/Nm!1/d. ~11b!

For a given experimentL andNm are constant. A colloidal
system with either DLCA or RLCA~reaction-limited cluster
aggregation! kinetics yields fractal clusters withD,d. Thus
the two length scalesRg andRNN will have differentN de-
pendences, hence different time dependences. TheN depen-
dences are shown as dashed lines in Fig. 3. Two diffe
length scales implies that the system cannot scale. This

r-
a-

a-
s

FIG. 3. Sketch of the structure factors as a function of wa
vector for a dilute system of aggregates.Stot(q)5SCC(q)SSC(q).
The length scales are as follows:L, scattering volume size;RNN ,
cluster-cluster mean nearest-neighbor separation; andRg , cluster
size. The quantities are as follows:Nm , total number of monomers
in the scattering volume;NC , number of clusters;N, number of
monomers per cluster whereNm5NCN; d, spatial dimension; and
D, fractal dimension. Dotted lines represent the evolution of po
A andB asN increases during aggregation.
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878 57H. HUANG, C. OH, AND C. M. SORENSEN
plains why scaling is not seen in the early stages of coll
aggregation because the length scales differ enough so
both areclearly visible in the total structure factor.

If compact clusters are formed, as they are during sp
odal decomposition, thenD5d andRg}RNN , i.e., they have
the same dependence on time. This implies only one in
pendent length scale, hence scaling can occur. By Fig. 3
qm value for the broad peak is proportional to bothRg

21 and
RNN

21, which are both proportional toN21/d; thus qm

;N21/d. The magnitude of the peak isNNm . It follows that
NNm;qm

2d , thusqm
2dI (q/qm) scales the structure factor. F

nally, note that if the clusters are compact, the single-clu
structure factor will show Porod scattering forq.Rg

21, i.e.,
SSC(q);q2(d11). Thus Eqs.~1! are obtained and this ex
plains the behavior of structure factor measurements on s
odally decomposing systems.

Next consider what happens in a dense system, wh
‘‘dense’’ will be used to implyRNN&4.5Rg . We pick this
definition because it is in this regime that theq-dependent
parts of the cluster-cluster and single-cluster structure fac
overlap. Such a situation is drawn in Fig. 4. Note that poi
A and B of Fig. 3 are now reordered in Fig. 4, i.e.,qA

54.5RNN
21.qB5Rg

21 rather thanqA,qB . This leaves a peak
in the total structure factor. In the simplified drawing of Fi
4 both length scales are still present inStot(q). Thus the con-
clusions above follow for the same reasons: no scaling
noncompact fractal clusters and scaling for compact clust
Figure 4, however, is too simple because the bends atqA and
qB are system dependent and gradual. If gradual, only w
4.5RNN

21 is significantly different fromRg
21, either greater or

FIG. 4. Sketch of the structure factors as a function of wa
vector for a dense system of aggregates. The length scales a
follows: L, scattering volume size;RNN , cluster-cluster mean
nearest-neighbor separation; andRg , cluster size. The quantities ar
as follows:Nm , total number of monomers in the scattering vo
ume;NC , number of clusters;N, number of monomers per cluste
whereNm5NCN; d, spatial dimension; andD, fractal dimension.
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less, will pointsA andB be resolvable and scaling not occ
for fractal clusters. However, it is conceivable, and belo
with simulations we will show, that when pointsA andB are
nearly the same, i.e., when 4.5RNN

21.Rg
21, the two length

scales arenot clearly visible in the total structure factor.
Then the system might appear to have only one length s
and an artificial scaling might occur. Moreover, note that o
of the extremes in which the length scales are obviou
discernible, 4.5RNN

21@Rg
21, cannot occur because gelatio

would stop the aggregation before this regime could be
tained. A rough estimate of when gelation occurs is when
clusters would touch, which is when 2Rg.RNN .

In summary, it appears that as a colloidal system agg
gates it can evolve from a nondense region in which b
length scales are visible in the total structure factor, th
scaling does not occur, to a dense regime, limited by g
tion, in which the signatures of the two lengths scales int
fere and hence scaling might occur. In the next section
simulations will substantiate these claims.

III. SIMULATION RESULTS

We simulated DLCA aggregation on a two-dimension
square lattice. The lattice size wasL51000 with periodic
boundary conditions and the monomers had a radius oa
5 1

2 . Initially the monomers are randomly distributed. At a
intermediate time, a cluster is picked at random and mo
in a random direction with a move probability toN21/D . If
any monomer in this cluster comes into contact with a mo
mer in another cluster, the two clusters aggregate and for
larger cluster.N versus Rg for our clusters yieldedD
51.45. Runs were made with 103, 104, and 53104 mono-
mers on the lattice, which correspond to densities of 1023,
1022, and 531022, respectively. For each density the sca
tered intensity was an average over eighteen runs. MeanRg
andRNN were calculated. Intensities were calculated for t
total, single-cluster, and cluster-cluster scattering using
~6! for Stot(q) and Eqs.~9! and ~10! for SCC(q) andSSC(q).

Our simulations showRNN andRg do, as expected, grow
at different rates during colloid aggregation~Fig. 5! such that
RNN;Rg

0.77. This occurs because the dimensionality of t
embedding space is greater than the dimensionality of
cluster, so that as the clusters aggregate, theirrelative sepa-
ration becomes smaller. According to Eqs.~11! RNN

;Rg
D/d . For our d52 simulation we findD51.45; thus

Dp /d50.72 to explain the result in Fig. 5.
Figures 3 and 5@the latter is a verification of Eqs.~11!#

can be combined to describe the evolution of the light sc
tered intensity during colloid aggregation. In very dilute sy
tems,RNN is too large, hence 4.5RNN

21 is too small, so that
only the single-cluster scattering is seen~Fig. 1!. In denser
systems, however, 4.5RNN

21 might be accessible to the exper
mentalq range; thusboth length scalesRNN andRg will be
present inStot . This is illustrated in Fig. 6, which contain
the result of ad52 DLCA simulation with a monomer den
sity of 1023. It displays the single-cluster behavior plus
modest dip forq<4.5RNN

21 until the Porod regime of the sca
tering volume at yet smallerq. @Oscillations in this Porod
regime in both Figs. 6 and 7 are due to the sharp edge of
scattering volume. Note, however, that the envelope of
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57 879STRUCTURE FACTOR SCALING IN AGGREGATING SYSTEMS
oscillation has the Porod law slope2(d11)523.# As de-
scribed above, becauseRNN is significantly greater thanRg ,
both length scales are relevant toStot ; since they have dif-
ferent time dependences,Stot should not be scalable to a
single length scale. The inset in Fig. 6 shows an attempt
do so whereqm was chosen to be in the middle of the Ray
leigh regime between 4.5RNN

21 and Rg
21. Scaling is not

achieved. This explains and demonstrates the lack of scal
observed in experimental systems during the early stages
aggregation.

As the system continues to evolve,RNN→Rg and the dip
that begins near 4.5RNN

21 and the power-law regime whenq

FIG. 5. Comparison of the mean cluster radius of gyrationRg

and mean cluster nearest-neighbor distanceRNN time evolutions.
This is a composite plot of three different aggregation runs wi
different numbers of monomers as specified, which have been r
caled so that the data are collinear.

FIG. 6. Structure factor for a two-dimensional aggregating sy
tem of 1000 monomers on a 100031000 square lattice at various
times. Units ofq area21, wherea is the lattice spacing. The large
feature atq.1023 is the finite size of system. With increasingq,
the feature falls off asq23 and then follows a modest dip atq
.p/RNN

21, a flat Rayleigh regime, a rounding atq.Rg
21, and finally

a power-law falloff with slope2D. Solid lines are the single-
cluster scattered intensity. The inset shows an unsuccessful atte
to scale these curves in accord with Eq.~1!.
to

ng
of

.Rg
21 will eventually overlap, leaving a sharper peak

drawn in Fig. 4. Such a situation is demonstrated in Fig.
which contains the results of ad52 DLCA simulation with a
monomer density of 0.05. Note that all three structure fact
have been calculated and are represented in Fig. 7. The
can be seen that Eq.~10! is verified to sufficient accuracy
Furthermore, Fig. 4 is verified in that the two shoulders
SCC(q) and SSC(q) representing the two length scalesRNN
and Rg are not observable inStot(q), which instead is left
with a rounded peak. As with previous simulation work an
in accord with experiment, the peak in the total structu
factor grows in magnitude and its position,qm , decreases
with time. It can also be scaled in accord with Eqs.~1!, as
shown in the inset in Fig. 7. However, as forecast at the e
of Sec. II, this peak is artificial in the sense that its positi
qm

21 does not represent a true length scale of the system.
true length scales areRNN and Rg and their effects, while
clearly evident inSCC(q) and SSC(q), respectively, are un-
discernible inStot(q) because each interferes with the othe
Moreover, we find, quite remarkably, that despite this ‘‘wip
out’’ of the length scales, the resultant peak in the total
tensity matches very well withpRNN

21 for all times in our
aggregation simulation. However, by the logic above, th
occurs by coincidence and is due to the manner in whichSCC
intersects withSSC.

IV. DISCUSSION

An important result of this work is that the position of th
structure factor maximumqm in dense aggregating colloids
spinodally decomposing fluids or other nonequilibrium sy
tems that have structure factors described by Eqs.~1! is not
directly related to a fundamental length scale of the syste

h
s-

-

pt

FIG. 7. Structure factor for a two-dimensional aggregating s
tem of 50 000 monomers on 100031000 square lattice. Compare
to Fig. 6, the dip in the rangeRNN

21– 4.5RNN
21 is greater and no flat

Rayleigh regime is seen. Also shown are the single-cluster~solid
line! and cluster-cluster structure factor~dotted line!. These curves
show how the length scales that parametrize these two struc
factorsRg and RNN , respectively, are no longer observable in th
total structure factor. The apparent peak atqm is therefore an arti-
fact, but very useful since, as the inset shows, scaling in accord w
Eq. ~1! is achieved using the artificialqm .
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880 57H. HUANG, C. OH, AND C. M. SORENSEN
That is,qm
21 is not a characteristic length of the system. Th

it is dangerous to useqm to infer kinetic information. In
some cases, for instance, in our simulations above where
found qm.pRNN

21 to be a good approximation, it may wor
quite well because of a fortuitous proportionality to one
the two true characteristic lengths of the system, but no s
connection is guaranteed.

Our results also give insight to the concept of kinetica
induced ordering. Contrary to previous speculations, the
netics of these various systems doesnot produce a new
length scale as implied by the growth of the peak in the to
structure factor. In any two-phase system there will be t
length scales: the size of the entities of one of the phases
their mean separation. For colloids and later-stage spinod
decomposing systems in which droplets have formed th
lengths areRg and RNN . The kinetics, however, can dete
mine the order in these two lengths and thereby determ
the visibility of the peak~actually the dip! in the total struc-
ture factor. For example, in a dilute colloidal system t
initial distribution of RNN is very broad, but the aggregatio
kinetics causesRg to grow faster thanRNN so that the ensu
ing crowding of clusters narrows theRNN distribution. This
narrowing is ordering and as sketched in Figs. 2–4 cre
dips and peaks in the structure factor. The weaker, or lack
peaks for RLCA versus DLCA is due to the greater polyd
persity, i.e., a broadRg distribution, in a RLCA colloid,
which in the dense, crowded system would causes a bro
RNN distribution, hence less distinct structure factor dips a
peaks. The kinetics may also create depletion zones aro
the clusters as many have proposed; these will enhance
visibility of the peak, but they do not imply a new leng
scale.

Finally, we remark that very often overlooked is theq→0
behavior, which is either neglected or taken to be ad func-
ys
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tion due to an ‘‘infinite’’ system size. This is an error. As th
system grows to infinity at constant density, i.e., asL→`,
thenNm→` as well. Thus the overall effect onStot(q) in Fig.
4 would be a relative narrowing of the system peak, but
end of its Porod regime would remain near~not exactly at!
pRNN

21. In fact, the literature contains examples of real d
that show the tail of the scattering volume Porod regi
@21#.

V. CONCLUSION

The total structure factor of a dense aggregating sys
can be described as a combination of cluster-cluster
single-cluster parts, each with their own length scale. If
clusters are compact, these two length scales are proport
and scaling in accord with experimental observation@Eqs.
~1!# occurs as a consequence of mass conservation and
rules of wave scattering. The kinetics of the cluster growth
not a factor in the scaling. If the clusters are not compact
fractal, these two length scales evolve differently, hence
structure factor cannot be scaled. The apparent scaling p
in dense systems of noncompact clusters is due to the o
lap of effects of these two length scales in the total struct
factor in such a way as to eliminate their individual effec
and leave a peak. It must be stressed that this peak i
artifact and its positionqm does not represent a true chara
teristic length scale of the system. The visibility of the pe
increases with increasing cluster-cluster order, which can
affected by the aggregation kinetics.
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